Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1999 Printed in Austria

Solid-State Molecular Dynamics of (Ph₃Si)Si(SiMe₃)₃ Studied by Variable Temperature ¹³C and ²⁹Si MAS NMR Spectroscopy

Xavier Helluy¹, Jörg Kümmerlen², Christoph Marschner³, and **Angelika Sebald**^{2,*}

¹ Rhône-Poulenc Rorer, Department of Pharmaceutical Sciences, Preformulation/Physical Analysis, Research Center of Vitry-Alfortville, F-94403 Vitry sur Seine Cedex, France

² Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

³ Institut für Anorganische Chemie, Technische Universität Graz, A-8010 Graz, Austria

Summary. One- and two-dimensional ¹³C and ²⁹Si solid-state NMR experiments at variable temperature demonstrate that crystalline (Ph₃Si)Si(SiMe₃)₃ lacks all molecular symmetry and that internal $2\pi/3$ reorientation of all three crystallographically inequivalent SiMe₃ groups in the molecule occurs. Quantitative analysis of one-dimensional MAS NMR spectra and of two-dimensional NMR exchange experiments by spectral lineshape simulations yields exchange rate constants for internal SiMe₃ reorientation as a function of temperature. The activation energies determined from these kinetic data are $E_a = 21 \pm 4$, 22 ± 4 , and $30 \pm 5 \text{ kJ} \cdot \text{mol}^{-1}$ for internal reorientation of the three inequivalent SiMe₃ groups in solid (Ph₃Si)Si(SiMe₃)₃.

Keywords. Molecular solid-state dynamics; Solid-state NMR; ¹³C and ²⁹Si MAS NMR; Exchange rate constants; Spectral lineshape simulations.

Untersuchung der molekularen Dynamik von (Ph₃Si)Si(SiMe₃)₃ im Festkörper mittels ¹³Cund ²⁹Si-MAS-NMR-Spektroskopie bei variabler Temperatur

Zusammenfassung. Ein- und zweidimensionale ¹³C- und ²⁹Si-NMR-Experimente am Festkörper bei verschiedenen Temperaturen zeigen, daß kristallines (Ph₃Si)Si(SiMe₃)₃ keine molekulare Symmetrie besitzt und daß interne $2\pi/3$ -Reorientierung der drei kristallographisch unterschiedlichen SiMe₃-Gruppen auftritt. Quantitative Analyse von eindimensionalen MAS-NMR-Spektren und zweidimensionalen Austauschexperimenten mittels Linienformsimulation ergibt die Geschwindigkeitskonstanten des obengenannten Austauschs als Funktion der Temperatur. Daraus erhält man für die interne Reorientierung der drei nichtäquivalentem SiMe₃-Gruppen in festem (Ph₃Si)Si(SiMe₃)₃ die folgenden Aktivierungsenergien: 21 ± 4 , 22 ± 4 und 30 ± 5 kJ·mol⁻¹.

^{*} Corresponding author

Introduction

 $Si(SiMe_3)_4$ and $C(SiMe_3)_4$ are highly disordered crystalline phases at ambient temperatures, similar to the disordered crystalline phases which exist for several nonpolar, spherically shaped organic molecules such as *e.g.* adamantane [1]. Both compounds undergo structural phase transitions to less disordered low-temperature phases $(Si(SiMe_3)_4 \text{ at } T < 238 \text{ K} [2], C(SiMe_3)_4 \text{ at } T < 213 \text{ K} [3])$; the molecular dynamic properties of these two low-temperature phases have been investigated by variable temperature ¹³C and ²⁹Si MAS NMR. The molecular point group symmetry in the low-temperature phases of Si(SiMe₃)₄ and C(SiMe₃)₄, as inferred from MAS NMR experiments, is C_3 [4–6] and is confirmed by X-ray diffraction analysis [7]. Despite identical molecular symmetry in these two low-temperature phases, the two compounds differ strongly with regard to the dynamic properties of their lowtemperature phases. Quantitative analysis of one- and two-dimensional variable temperature ¹³C and ²⁹Si MAS NMR experiments permits to distinguish and precisely determine exchange rate constants for internal SiMe₃ reorientation and for whole-molecule reorientation around preferred molecular axes as a function of temperature. The dynamic solid-state properties of the low-temperature phases of $Si(SiMe_3)_4$ and $C(SiMe_3)_4$ may be briefly summarized as follows. In the lowtemperature phase of $Si(SiMe_3)_4$ we observe internal SiMe₃ reorientation and additional whole-molecule reorientation; the exchange rate constants for internal SiMe₃ reorientation always considerably exceed those for whole-molecule reorientation. The situation is different for solid $C(SiMe_3)_4$: over the entire temperature range of existence of the low-temperature phase, only whole-molecule reorientation is observed, whereas exchange rate constants for internal SiMe₃ reorientation are negligibly small [6]. We have interpreted this difference in the solid-state molecular dynamic properties of $Si(SiMe_3)_4$ and $C(SiMe_3)_4$ in relation to higher intramolecular steric crowding in $C(SiMe_3)_4$. This interpretation is qualitatively supported by empirical force-field calculations based on the gas-phase structures of Si(SiMe₃)₄ [8] and C(SiMe₃)₄ [9].

Here we report on the solid-state dynamic properties of a compound chemically closely related to $Si(SiMe_3)_4$. In $(Ph_3Si)Si(SiMe_3)_3$ (1) the molecular symmetry is lowered by chemical substitution as compared to the fully SiMe_3 substituted parent molecule. We have investigated the dynamic solid-state properties of 1 by variable temperature one- and two-dimensional ¹³C and ²⁹Si CP/MAS NMR experiments. The experimental NMR results on 1 are compared to the dynamic properties of the low-temperature phase of Si(SiMe_3)_4.

Results and Discussion

Apart from internal reorientation of the methyl groups themselves (which will not be considered in the following) and possible π -flips of the phenyl groups in the SiPh₃ moiety, *a priori* there are two modes of molecular dynamics to be considered for solid (Ph₃Si)Si(SiMe₃)₃ (1):

i) internal reorientation of the individual R_3 Si groups (R = Ph, Me) around the R_3 Si-Si_{central} bond directions, leading to mutual exchange of the groups R within a Si R_3 unit (referred to as internal reorientation), and

Molecular Dynamics of Solid (Ph₃Si)Si(SiMe₃)₃

ii) reorientation of the Si(SiMe₃)₃ moiety around the Ph₃Si-Si_{central} bond direction axis, leading to mutual exchange of the three SiMe₃ groups as a whole (referred to as Si(SiMe₃)₃ reorientation).

These two reorientational modes, if present, may occur simultaneously. Our experimental solid-state NMR tools to investigate and possibly distinguish these two reorientational modes consist of one- and two-dimensional variable temperature ¹³C and ²⁹Si NMR experiments in conjunction with spectral lineshape simulations.

Many solid organosilicon compounds undergo structural phase transitions upon cooling or heating. Differential scanning calorimetry (DSC) of 1 gives no indication for the occurrence of such structural phase transitions in solid 1 in the temperature range of T = 180-290 K. Accordingly, observation of temperature dependent spectral lineshapes in ¹³C and ²⁹Si MAS NMR experiments on 1 cannot be ascribed to the effects of structural phase transitions in this temperature range.

Under MAS conditions, that is at MAS rates sufficiently high to average out all ²⁹Si chemical shielding anisotropies, ²⁹Si MAS NMR spectra of 1 can report on the molecular symmetry of 1 as well as - selectively - on Si(SiMe₃)₃ reorientational processes, whereas ¹³C MAS NMR spectra of **1** will be affected by both internal R_3 Si and Si(SiMe₃)₃ reorientation [6]. With this aspect in mind, we first consider the ²⁹Si MAS NMR spectra of 1 (Fig. 1). At T = 150 K we observe three barely resolved ²⁹Si resonances ($\delta_{iso} = -9.3, -9.9, -10.2$ ppm), corresponding to three nonequivalent SiMe₃ groups, one resonance for the SiPh₃ group ($\delta_{iso} =$ -11.7 ppm), and one resonance for the central Si atom ($\delta_{iso} = -133.4$ ppm). ²⁹Si CP NMR spectra of 1, obtained under static conditions, display a ²⁹Si chemical shielding tensor with a large asymmetry parameter ($-\delta_{iso} = \sigma_{iso} = 133.4$ ppm, $\sigma_{11} = 124.0$ ppm, $\sigma_{22} = 132.6$ ppm, $\sigma_{33} = 143.4$ ppm, $\eta = 0.85$) for the resonance of the central Si atom (see Fig. 1). Accordingly, solid 1 lacks all molecular symmetry and, if present, we should be able to detect Si(SiMe₃)₃ reorientation from one- and two-dimensional variable temperature ²⁹Si MAS NMR experiments. Figure 2a shows the SiMe₃/SiPh₃ region of the ²⁹Si MAS NMR spectra of 1 in the

Fig. 1. ²⁹Si CP NMR experiments on 1 ($\omega_0/2\pi = 59.6$ MHz): a) ²⁹Si CP MAS NMR ($\omega_{rot}/2\pi = 4.0$ kHz, T = 150 K); b) ²⁹Si CP NMR, static conditions, only the chemical shielding powder pattern of the ²⁹Si resonance of the central Si atom at three different temperatures is shown

Fig. 2. Variable temperature ²⁹Si CP MAS NMR spectra of 1; only the SiPh₃/SiMe₃ region is shown, temperatures are indicated ($\omega_0/2\pi = 59.6$ MHz, $\omega_{rot}/2\pi = 4.0$ kHz): a) upper traces represent experimental spectra, lower traces are the corresponding best-fit calculated spectra, assuming minor intrinsic temperature-dependence of δ_{iso} (²⁹Si) of the four ²⁹Si resonances of the SiPh₃ and SiMe₃ groups in 1; b) calculated hypothetical ²⁹Si MAS NMR spectra of 1, assuming mutual exchange of the three SiMe₃ groups by Si(SiMe₃)₃ reorientation

temperature range of T = 150-290 K. It is tempting to ascribe the minor changes of isotropic chemical shifts in the SiMe₃ region, observed as a function of temperature, to Si(SiMe₃)₃ reorientation around the Ph₃Si-Si_{central} bond direction and leading to coalescence of the three ²⁹Si resonances of the three SiMe₃ groups at higher temperatures. This explanation can be ruled out by calculating expected exchange broadened ²⁹Si NMR spectral lineshapes for mutual exchange of the three SiMe₃ groups in **1** and comparing them to the experimental ²⁹Si MAS NMR spectra. Temperature dependent spectral lineshapes caused by Si(SiMe₃)₃ reorientation around the Ph₃Si-Si_{central} bond direction would have to display an asymmetric shape in the spectral SiMe₃ region with a shoulder at higher frequencies at temperatures approaching coalescence (Fig. 2b), whereas the experimentally observed ²⁹Si spectral lineshapes display an inversely asymmetric

shape in this temperature region with an unresolved shoulder towards lower frequencies. Bearing in mind that the entire SiMe₃ region in the ²⁹Si MAS NMR spectra of 1 ($\omega_0/2\pi = 59.6$ MHz) only spans a frequency range of approximately 100 Hz and that we consider a temperature range of roughly 150 degrees, it is reasonable to ascribe the observed changes in ²⁹Si spectral lineshapes to minor intrinsic temperature shifts of $\delta_{iso}(^{29}Si)$. With this assumption, the temperature dependent ²⁹Si NMR spectral lineshapes can be well reproduced (Fig. 2a); the simulated spectral lineshapes correspond to intrinsic temperature shifts of $\delta_{iso}(^{29}Si)$ for the SiMe₃ and SiPh₃ groups in solid 1 of 0.003, 0.006, 0.005 ppm/K (SiMe₃) and 0.007 ppm/K (SiPh₃). Furthermore, within experimental error the ²⁹Si chemical shielding tensor of the resonance of the central Si atom does not change as a function of temperature (see Fig. 1), and also ²⁹Si 2D EXSY experiments on 1 (data not shown) under MAS (T = 204 and 224 K, mixing times of $\tau_{mix} = 4$ and 3 s) and under static conditions (T = 290 K, $\tau_{mix} = 5$ s and 50 µs) give no indication for the presence of a molecular dynamic process leading to mutual exchange of the three crystallographically nonequivalent $SiMe_3$ sites in 1. In short, on the frequency scales accessible by one- and two-dimensional variable temperature ²⁹Si MAS NMR experiments $(10^{-2}-10^3 \text{ s}^{-1})$ on solid 1, the molecule in the crystal lattice does not undergo Si(SiMe₃)₃ reorientational jumps around the Ph₃Si-Si_{central} bond direction. The absence of this kind of dynamic disorder in solid 1 is in contrast to the dynamic properties of the (chemically) symmetrically substituted derivative Si(SiMe₃)₄. For the latter, whole-molecule reorientational jumps do occur at temperatures of $T \approx 170-220$ K with exchange rate constants of the order of $k \approx 10^{-1} - 10^2 \,\mathrm{s}^{-1}$ [6].

Having established the complete lack of molecular symmetry and the absence of Si(SiMe₃)₃ reorientation for solid **1** by means of ²⁹Si MAS NMR, we may next inspect the solid-state dynamic properties of **1** as seen by one- and twodimensional variable temperature ¹³C MAS NMR. The lack of molecular symmetry for **1** leads us to expect up to eighteen resonances in the phenyl region and nine resonances in the methyl region of the ¹³C MAS NMR spectrum of **1**. Not so surprisingly, even at T = 150 K (Fig. 3) these multiple carbon sites are only

Fig. 3. ¹³C CP MAS NMR spectra of 1 ($\omega_0/2\pi = 75.5$ MHz, $\omega_{rot}/2\pi = 4.0$ kHz) at different temperatures; left column displays ¹³C-phenyl spectral region, right column ¹³C-methyl spectral region

partially resolved in the ¹³C MAS NMR spectrum ($\omega_0/2\pi = 75.5$ MHz). As far as the phenyl-¹³C region is concerned, hardly any changes are observed in the ¹³C MAS NMR spectra of 1 as a function of temperature. On the timescale of onedimensional ¹³C MAS NMR experiments in the temperature range of T = 150-290 K, we have no indication for the occurrence of either reorientation of the SiPh₃ group around the Ph₃Si-Si_{central} bond direction or for π -flips of the individual phenyl groups in the SiPh₃ moiety. A different situation is found for the methyl-¹³C region for which we do observe a strong temperature dependence in the ¹³C MAS NMR spectra of 1 (Fig. 3). The only remaining possible dynamic process to account for these temperature dependent ¹³C MAS NMR effects is internal $2\pi/3$ reorientation of the three crystallographically inequivalent SiMe₃ moieties in solid **1**. Given the incomplete spectral resolution in the methyl- 13 C region of these 13 C MAS NMR spectra, it would be a rather hopeless task to immediately attempt quantitative analysis of these spectral lineshapes in terms of exchange rate constants of internal SiMe₃ reorientation as a function of temperature by means of spectral lineshape simulations. There are too many unknown parameters, such as the unknown assignment of the nine incompletely resolved 13C resonances into groups of three, each group representing one SiMe3 unit. Furthermore, with the three SiMe₃ groups in solid 1 being crystallographically inequivalent, these three SiMe₃ moieties do not necessarily have to undergo internal SiMe₃ reorientation with identical exchange rate constants k, k', and k''. Unequal exchange rate constants of internal $2\pi/3$ reorientation for crystallographically inequivalent ^{*i*}Bu groups in a Si^tBu₃ moiety [10] or SiMe₃ groups in a C(SiMe₃)₃ unit [11] have previously been observed.

Here we can take advantage of 2D ¹³C MAS NMR EXSY experiments. As an example, the contour plot of a two-dimensional ¹³C MAS NMR exchange experiment of 1 at T = 169 K and with a mixing time $\tau_{mix} = 250$ ms is displayed in Fig. 4. 2D ¹³C EXSY experiments on 1, obtained with different mixing times τ_{mix} and at various different temperatures, permit unambiguous assignment of the

Fig. 4. Contour plots of 2D ¹³C MAS EXSY spectra of 1 (T = 169 K, $\tau_{mix} = 250$ ms); only the ¹³C-methyl region is shown; a) experimental spectrum, b) best-fit simulated spectrum

methyl-¹³C spectral region into three groups of three methyl-¹³C resonances, each representing one SiMe₃ group. We already know that the only molecular dynamic process we have to take into account for **1** is internal $2\pi/3$ SiMe₃ reorientation. Accordingly, off-diagonal peaks in the methyl-¹³C spectral region in 2D ¹³C EXSY spectra of **1** can only occur between methyl-¹³C resonances belonging to methyl groups within the same SiMe₃ group. Careful inspection of 2D ¹³C EXSY spectra of **1** (Fig. 4) reveals these "3 × 3 assignment connectivities" and thus provides valuable information input for subsequent spectral lineshape simulations of the one-dimensional variable temperature ¹³C MAS NMR spectra of **1**. Beyond this assignment aspect from 2D ¹³C EXSY spectra of **1**, differing relative off-diagonal intensities for ¹³C-methyl resonances belonging to different SiMe₃ groups directly and clearly indicate unequal exchange rate constants *k*, *k'*, and *k''* for internal $2\pi/3$ SiMe₃ reorientation of the three crystallographically inequivalent SiMe₃ groups in solid **1**.

Most commonly, 2D ¹³C EXSY experiments are carried out at temperatures low enough to be able to operate in the so-called slow-exchange regime. In this regime, exchange rate constants of the dynamic process under consideration are small enough to allow to take into account only exchange occuring during the mixing time of the two-dimensional NMR experiment and to neglect all motion occuring during the evolution and detection period. 2D ¹³C EXSY NMR data obtained in this slow-exchange regime yield exchange rate constants in a straightforward manner directly from the relative integrated intensities of off-diagonal peaks as a function of the mixing time τ_{mix} ; there is no need for a full simulation of the two-dimensional NMR experiment in order to extract kinetic parameters. For 13 C NMR experiments on solid 1, this slow-exchange regime is only reached at inconveniently low temperatures (T < 160 K). Hence, 2D ¹³C EXSY experiments on 1 have to be obtained in the so-called intermediate-exchange regime where exchange occuring during the evolution and detection period can no longer be neglected for meaningful analysis. In order to extract exchange rate constants from 2D¹³C EXSY experiments carried out in the intermediate-exchange regime, a full simulation of the two-dimensional NMR experiment, including the effects of exchange occuring during evolution and detection period, is necessary. Methods to fully analyze and simulate such experimental 2D EXSY data have been described in detail in the literature [12]; the contour plot of the best-fit simulated 2D 13 C EXSY spectrum of 1 is shown in Fig. 4b in comparison to the contour plot of the corresponding experimental spectrum. Qualitatively, it is obvious from inspection of the 2D 13 C EXSY experiment that internal SiMe₃ reorientation for one of the three SiMe₃ groups in 1 occurs at a lower exchange rate than for the other two SiMe₃ groups in the molecule. Of course, full simulation of such intermediateregime 2D ¹³C EXSY experiments yields exchange rate constants.

Based on the 2D ¹³C EXSY information (signal assignment as well as knowing that internal SiMe₃ reorientation of one of the three SiMe₃ groups occurs at a considerably slower rate than for the other two SiMe₃ groups), we can now proceed and simulate the one-dimensional variable temperature ¹³C MAS NMR exchange broadened lineshapes in terms of exchange rate constants of internal SiMe₃ reorientation. Formally, the exchange broadened lineshapes can be described as a superposition of three (independent) three-site exchange processes. The results

Fig. 5. Variable temperature ¹³C MAS NMR spectra of 1; only the ¹³C-methyl region is shown and temperatures are indicated. Upper traces represent experimental spectra, lower traces are the corresponding best-fit calculated spectra; the bar code at the bottom indicates assignment of the ¹³C-methyl resonances into groups of three, each group representing one SiMe₃ group; the smaller linewidth of the bars for one SiMe₃ group indicates slower exchange than for the other two SiMe₃ groups (see also Fig. 6)

of this iterative fitting procedure are shown in Fig. 5 where the ¹³C-methyl region of experimental ¹³C MAS NMR spectra of **1** in the temperature range of T=150-225 K is compared to the best-fit calculated spectral lineshapes. The semilogarithmic plot of exchange rate constants vs. T⁻¹ in Fig. 6 summarizes the exchange rate constants for internal SiMe₃ reorientation in solid **1** as determined by simulation of one- and two-dimensional variable temperature ¹³C MAS NMR experiments. Over the temperature range considered, the exchange rate constants follow Arrhenius' law, and from the slope of the plots depicted in Fig. 6 we obtain activation energies $E_a = 21 \pm 4$, 22 ± 4 , and 30 ± 5 kJ mol⁻¹, respectively, for the internal reorientation of the three SiMe₃ groups in **1**. For Si(SiMe₃)₄, we find $E_a = 53 \pm 6$ kJ mol⁻¹ for internal SiMe₃ reorientation [6]. For Si(SiMe₃)₄, the crystal structure has been determined [7], but not for **1**. Accordingly, any attempts

Fig. 6. Semilogarithmic plots of exchange rate constants k, k', and k'' for internal SiMe₃ reorientation in **1** vs. 1/*T*; the symbols refer to exchange rate constants determined from ¹³C MAS (*, \diamond , \bigcirc) and ¹³C 2D EXSY (×, \bigtriangledown , \Box) NMR experiments; note the difference in exchange rate constants for the three inequivalent SiMe₃ groups in solid **1**

to rationalize these differences in E_a for internal SiMe₃ reorientation necessarily have to be speculative. A major contribution towards energy barriers for internal SiMe₃ reorientation of predominantly intramolecular nature seems a reasonable assumption, and thus implies a lesser degree of intramolecular steric hindrance of the SiMe₃ groups in **1** as compared to Si(SiMe₃)₄.

Experimental

Compound 1, (Ph₃Si)Si(SiMe₃)₃, was synthesized following a published procedure [13].

NMR experiments and data analysis

All ¹³C and ²⁹Si NMR experiments were carried out on a Bruker MSL 300 NMR spectrometer at *Larmor* frequencies of 75.5 (¹³C) and 59.6 (²⁹Si) MHz, respectively. Standard 4 mm and 7 mm ZrO₂ rotors and double-bearing probes were used. For variable temperature MAS NMR experiments, purified N₂ gas served as drive and bearing gas. MAS frequencies were in the range of 2.0–4.5 kHz, ¹H $\pi/2$ pulse durations were 3–5 µs, recycle delays were 3–5 s, and contact times for *Hartmann-Hahn* cross-polarization were 1.5 ms (¹³C) and 2.0 ms (²⁹Si). 2D exchange spectroscopy (EXSY) [14] employed phase cycling according to the TPPI method [15]. Spectral lineshape simulations of the exchange broadened one-dimensional ¹³C and ²⁹Si MAS NMR spectra of 1 were carried out as described elsewhere [6, 10, 14, 16]. Some ¹³C 2D EXSY spectra of 1 have been obtained in the so-called intermediate motional regime. Simulation of such 2D spectra hence requires a suitably extended exchange matrix formalism as described in the literature [12] where also motion during the evolution and detection periods of the experiment is taken into account and where *T*₁ relaxation during the mixing time is still negligible. Iterative fitting procedures employed the MATLAB [17] simplex and quasi-*Newton* routines for nonlinear least-squares minimization.

Isotropic chemical shifts $\delta_{iso}({}^{13}C)$ and $\delta_{iso}({}^{29}Si)$ are given with respect to external SiMe₄, chemical shielding tensor eigenvalues are reported according to *Haeberlen*'s convention [18]; $\delta_{iso} = -\sigma_{iso}; |\sigma_{33} - \sigma_{iso}| \ge |\sigma_{11} - \sigma_{iso}| \ge |\sigma_{22} - \sigma_{iso}|; \eta = (\sigma_{22} - \sigma_{11}) (\sigma_{33} - \sigma_{iso})^{-1}$.

Acknowledgements

Support of this work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank *A. Facher*, Bayreuth, for carrying out DSC measurements on **1**.

References

- [1] Parsonage NG, Staveley LAK (1978) Disorder in Crystals. Clarendon Press, Oxford
- [2] Murrill E, Breed LW (1971) Inorg Chem 10: 641
- [3] Dereppe JM, Magill JH (1972) J Phys Chem 76: 4037
- [4] Aliev AE, Harris KDM, Apperley DC (1993) J Chem Soc Chem Commun 251
- [5] Aliev AE, Harris KDM, Apperley DC, Harris RK (1994) J Solid State Chem 110: 314
- [6] Helluy X, Kümmerlen J, Sebald A (1998) Organometallics (in press)
- [7] Dinnebier RE, Dollase WA, Helluy X, Kümmerlen J, Sebald A, Pagola S, Stephens PW, van Smaalen S (1998) Acta Cryst B (submitted)
- [8] Bartell LS, Clippard FB, Boates TL (1970) Inorg Chem 9: 2436
- [9] Beagley B, Pritchard RG, Titiloye JO (1988) J Mol Struct 176: 81
- [10] Kümmerlen J, Sebald A (1997) Organometallics 16: 2971
- [11] Helluy X, Kümmerlen J, Sebald A (1997) Organometallics 16: 5218
- [12] Schmidt-Rohr K, Spiess HW (1994) Multidimensional Solid-State NMR and Polymers. Academic Press, London
- [13] Marschner C (1998) Eur J Inorg Chem 221
- [14] Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford
- [15] Marion D, Wüthrich K (1983) Biochem Biophys Res Commun 113: 467
- [16] Mehring M (1983) Principles of High Resolution NMR in Solids. Springer, Berlin
- [17] MATLAB, Version 5.0 (1992) The Math Works Inc., Natick, MA
- [18] Haeberlen U (1976) High Resolution NMR in Solids, Selective Averaging. Adv Magn Reson Supplement 1. Academic Press, New York

Received June 13, 1998. Accepted July 31, 1998